雑誌文献を検索します。書籍を検索する際には「書籍検索」を選択してください。

検索

書誌情報 詳細検索 by 医中誌

Japanese

Representation and Readout of Object Information in Macaque Higher Visual Cortex Naohisa Miyakawa 1 , Isao Hasegawa 2,3 1Department of Ultrastructural Research, National Institute of Neuroscience, National Center for Psychiatry and Neurology 2Department of Physiology, Niigata University School of Medicine 3Center for Transdisciplinary Research, Niigata University Keyword: brain-machine interface , electrocorticogram , multi-neuron recording , decoding , inferior temporal cortex , object vision pp.643-650
Published Date 2013/6/1
DOI https://doi.org/10.11477/mf.1416101515
  • Abstract
  • Look Inside
  • Reference

Abstract

 Electrocorticogram (ECoG) is an electrophysiological brain activity recording technique that has been widely revisited in recent years, not only for clinical monitoring, but also for prosthetic applications. However, the extent and limitations of the technique are poorly understood. Higher areas of human and macaque ventral visual cortices are known to have functional domain structures that are selective to certain categories, and population vectors that have been derived from visually evoked single-unit activity (SUA) recording in this region have been shown to form category clusters. How can visually evoked potentials recorded with ECoG from the same region be exploited to extract category information? To answer this question, the development of a simultaneous ECoG and SUA recording device by the modification of a previously reported flexible mesh ECoG probe with a microelectromechanical system has been promising (Toda et al., 2011). Indeed, Toda et al. conducted simultaneous recordings and reported that mesh ECoG signals exhibited comparable or better signal variabilities compared to conventional methods in the rat visual cortex. With this approach, we conducted intensive simultaneous ECoG and SUA recordings from the macaque anterior inferior temporal (IT) cortex. We compared how basic visual category and fine information is decoded from different recording modalities. Our preliminary results indicated that ECoG signals from the IT cortex may be a useful source for reading out certain levels of category information from visual input.


Copyright © 2013, Igaku-Shoin Ltd. All rights reserved.

基本情報

電子版ISSN 1344-8129 印刷版ISSN 1881-6096 医学書院

関連文献

もっと見る

文献を共有