雑誌文献を検索します。書籍を検索する際には「書籍検索」を選択してください。

検索

書誌情報 詳細検索 by 医中誌

Japanese

Visualization of Synapse-glia Dynamics Hideko Nishida 1,2 , Shigeo Okabe 1,2 1Department of Cell Biology, School of Medicine, Tokyo Medical and Dental University 2COE Program for Brain Integration and its Disorders, Tokyo Medical and Dental University Keyword: synapse , glia , dynamics , time-lapse observation pp.755-761
Published Date 2007/7/1
DOI https://doi.org/10.11477/mf.1416100103
  • Abstract
  • Look Inside
  • Reference

Abstract

 Increasing evidence indicates the importance of neuron-astrocyte interaction in synaptic function. However, structural evidence is scarce compared to abundant information from electrophysiological studies. Meticulous studies using serial electron microscopic technique in hippocampal CA1 and cerebellum provided the earliest knowledge about three-dimensional close relationship between synapses and glial processes. Nevertheless, morphological observation of synapse-glia interaction in live tissues is important to support the idea of astrocytic effects on synaptic transmission. Recently several methods enabled live imaging of astrocytes as well as dendritic spines in acute slices and tissues cultures. The techniques to visualize live astrocytes in brain tissues include transgenic mice (GFAP promoter-GFP), sulforhodamine 101 (SR101) application to the surface of neocortex in vivo, ballistic labeling with EGFP plasmid and recombinant viruses (Semliki Forest virus A7 or adenovirus expressing EGFP). Live astrocytes in brain tissues showed higher motility than neuronal structures in the vicinity of dendrites. Astrocytes extend or retract their numerous fine processes and change their volume or shape in a complex manner. Simultaneous observation of filopodia/spines and astrocytes revealed that filopodia/spines often contact with astrocytic processes and that they showed coordinated morphological dynamics in adult and developmental stage, suggesting possible functions of synapse-astrocyte contacts. Indeed, the local regulation of filopodial stabilization and maturation into spines by astrocytic contacts was reported. In the next step any astrocytic structural changes around mature synapses correlated with plastic change of synaptic efficacy, such as long-term potentiation, should be investigated. Structural relationship between axon terminals and astrocytic processes should also be revealed. Furthermore, in vivo time-lapse imaging of synapse-astrocyte pairs will soon be accomplished, as techniques of in vivo two-photon imaging showed remarkable progress recently.


Copyright © 2007, Igaku-Shoin Ltd. All rights reserved.

基本情報

電子版ISSN 1344-8129 印刷版ISSN 1881-6096 医学書院

関連文献

もっと見る

文献を共有