雑誌文献を検索します。書籍を検索する際には「書籍検索」を選択してください。

検索

書誌情報 詳細検索 by 医中誌

Japanese

Molecular Mechanism and Regulation of Axon Growth Inhibition Toshihide Yamashita 1,2 1Department of Neurobiology, Graduate School of Medicine, Chiba University 2Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University Keyword: spinal cord injury , axon , myelin , Rho , central nervous system pp.1347-1353
Published Date 2007/12/1
DOI https://doi.org/10.11477/mf.1416100189
  • Abstract
  • Look Inside
  • Reference

Abstract

 In the adult mammalian central nervous system (CNS), it is well known that injured axons exhibit very limited regeneration ability. Due to this lack of appropriate axonal regeneration, a traumatic damage to the adult brain and spinal cord frequently causes permanent neuronal deficits such as paralysis. Several axon growth inhibitors, including myelin-associated glycoprotein, Nogo, and oligodensrocyte myelin glycoprotein, in the CNS have been identified in the myelin. Receptor complex comprising of the Nogo receptor, the p75 receptor, and LINGO-1 transduces the signals from all of these inhibitors in vitro. Downstream of these inhibitors, activation of small GTPase RhoA and its effector Rho-kinase has been shown to be a key element for neurite growth inhibition and growth cone collapse elicited by these inhibitors. Consistent with these findings in vitro, inhibition of RhoA or Rho-kinase in vivo promotes axon growth and functional recovery after spinal cord injury. Recently, several developmental guidance proteins, including repulsive guidance molecules, semaphorin, and ephrin are suggested to be involved in axon growth inhibition after injury to the CNS. Thus, multiple axon growth inhibitors seem to contribute to inability of the injured axons to regenerate, and therapeutic strategy to block the multiple axon growth inhibitors may provide efficient tools that produce functional regeneration following injuries to the CNS. In addition, it is noted that synaptic plasticity in pre-existing pathways and the formation of new circuits through collateral sprouting of lesioned and unlesioned fibers are important components of the spontaneous recovery process. The molecular mechanism of this phenomenon is poorly understood, and elucidation of this will contribute to enhancement of functional recovery after incomplete injury to the CNS. I will summarize recent findings regarding these issues.


Copyright © 2007, Igaku-Shoin Ltd. All rights reserved.

基本情報

電子版ISSN 1344-8129 印刷版ISSN 1881-6096 医学書院

関連文献

もっと見る

文献を共有